
evaluating the impact of intel knl memory

settings on performance through case

studies

I. Masliah

28-03-2017



KNL on PLAFRIM

Current configurations :

• Kona01 : flat / quadrant

• Kona02 : cache / quadrant

• Kona03 : hybrid / quadrant

• Kona04 : cache / SNC-4

What we have seen :
For memory bound problems, the flat memory mode is always more
efficient

This is also true for compute bound problems (if it fits in
MCDRAM)

1



Direct allocations in MCDRAM

Need to download and install memking

• Available at https://github.com/memkind

• Provides a special malloc, a memory allocator in C++ and Fortran
attributes

#include <vector >

#include <hbw_allocator.h>

using T = double;

std::vector <T, hbw::allocator <T>> A(m*n);

std::vector <T, hbw::allocator <T>> B(m*n);

std::vector <T, hbw::allocator <T>> C(m*n);

cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasNoTrans ,

m , n, k, alpha , A.data(), lda , B.data(), ldb , beta , C.data(), ldc);

2

https://github.com/memkind


matrix product



Scaling matrix product (square matrices)

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●
●

● ●
●

●

●

●

●

1200

1300

1400

1500

1600

1700

1800

1900

2000

1000 6000 11000 16000 21000 26000
Size

gf
lo

p/
s machine

●

●

kona01

kona02

4



Scaling matrix product (square matrices)

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1200

1300

1400

1500

1600

1700

1800

1900

2000

1000 6000 11000 16000 21000 26000
Size

G
F

lo
p/

s

Machine
●

●

●

kona01

kona02

kona03

5



batched matrix product (100 000)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

50

100

150

200

250

300

350

400

450

500

550

600

8 10 12 14 16 18 20 22 24 26 28 30 32
Size

gf
lo

p/
s machine

●

●

kona01

kona02

6



qr mumps

authors of this study: emmanuel agullo, alfredo buttari,

mikko byckling, abdou guermouche, ian masliah



The Multifrontal QR method

The original multifrontal method by Duff & Reid ’83 can be extended
to QR factorization of sparse matrices.
This method is guided by a graph called elimination tree:

• each node is associated with a
relatively small dense matrix called
frontal matrix (or front) containing k
pivots to be eliminated along with all
the other coefficients concerned by
their elimination.

8



The Multifrontal QR method

The tree is traversed in topological order (i.e., bottom-up) and, at
each node, two operations are performed:

• assembly: coefficients from the original
matrix associated with the pivots and
contribution blocks produced by the
treatment of the child nodes are
stacked to form the frontal matrix.

• factorization: the k pivots are
eliminated through a complete dense
QR factorization of the frontal matrix.
As a result we get:
◦ part of the global R and Q factors.
◦ a triangular contribution block that will

be assembled into the father’s front.

8



The Multifrontal QR method

The tree is traversed in topological order (i.e., bottom-up) and, at
each node, two operations are performed:

• assembly: coefficients from the original
matrix associated with the pivots and
contribution blocks produced by the
treatment of the child nodes are
stacked to form the frontal matrix.

• factorization: the k pivots are
eliminated through a complete dense
QR factorization of the frontal matrix.
As a result we get:
◦ part of the global R and Q factors.
◦ a triangular contribution block that will

be assembled into the father’s front.

8



The Multifrontal QR method

Typically two sources of parallelism are exploited in the multifrontal
method

• tree-level parallelism: frontal matrices
located in independent branches in the
tree can be processed in parallel.

• node-level parallelism: large frontal
matrices factorization may be
performed in parallel by multiple
threads.

8



The Multifrontal QR method

Typically two sources of parallelism are exploited in the multifrontal
method

• tree-level parallelism: frontal matrices
located in independent branches in the
tree can be processed in parallel.

• node-level parallelism: large frontal
matrices factorization may be
performed in parallel by multiple
threads.

8



The Multifrontal QR method

Typically two sources of parallelism are exploited in the multifrontal
method

• tree-level parallelism: frontal matrices
located in independent branches in the
tree can be processed in parallel.

• node-level parallelism: large frontal
matrices factorization may be
performed in parallel by multiple
threads.

8



qr mumps Experimental Conditions

Matrices from the UF SParse Matrix Collection:

Mat. name m n nz op. count peak mem

(Gflop) (GB)

spal 004 10203 321696 46168124 27059 23.3

TF17 38132 48630 586218 38209 12.8

n4c6-b6 104115 51813 728805 97304 35.6

lp nug30 52260 379350 1567800 171051 83.4

TF18 95368 123867 1597545 194472 78.1

• Factorization step only

• Implementation over the StarPU runtime system

9



Tuning the KNL system for qr mumps

• Important memory requirements
• Large number of dynamic memory allocations

The Hardware

• Cache mode: Flat, Cache, Hybrid

• Clustering mode: All-to-All, Quadrant, Hemisphere, SNC2, SNC4

The Operating System

• Huge pages : Transparent Huge Page, TBB
◦ Standard page size : 4KB
◦ Huge page size : 2MB, 1GB
◦ Number : freely settable

• Memory Allocator : default, TBB

10



Tuning the KNL system for qr mumps

• Important memory requirements
• Large number of dynamic memory allocations

Test machines :

System 1 (KNL64) Intel(R) Xeon Phi(TM) CPU 7210 - 64 cores @1.3 GHz

System 2 (KNL68) Intel(R) Xeon Phi(TM) CPU 7250 - 68 cores @1.4 GHz

System 3 (BDW) Intel(R) Xeon(R) E5 2697v5 - 2 sockets, 18 cores @2.3 Ghz

KNL Hardware settings :

Clustering mode quadrant

MCDRAM mode cache

Operating system/memory settings :

Operating system RHEL 7.2

Memory allocator TBB : scalable allocator, Explicit Hugepages (8000)

THP always active

Hugepage size 2MB

Libraries settings :

Compiler Intel Parallel Studio 2017, Update 1

BLAS library Intel Math Kernel Library, 2017 Update 1

qr mumps 2.0

StarPU/scheduler trunk (rev.19630)/ws

10



Tuning block sizes on KNL

112

113

114

115

116

117

118

119

120

500 510 520 530 540 550 560 570 580 590 600
nb

ib

600

650

700

750
Gflop/s

112

113

114

115

116

117

118

119

120

500 510 520 530 540 550 560 570 580 590 600
nb

ib

750

800

850

900

950
Gflop/s

Impact of block size for fronts (KNL64) of size 16384 × 8192 (left)
and 20480 × 16384 (right)

11



Tuning memory settings for Multifrontal QR (KNL64)

 200

 400

 600

 800

 1000

 1200

spal_004 TF17 n4c6-b6 lp_nug30 TF18

G
f
l
o
p
/
s

Matrix

Hugepages,TBB,THP

Hugepages,TBB

TBB,THP

THP

TBB

base

12



Energy efficiency and performance

Gflop/s Gflop/s/watt

Matrix BDW KNL64 KNL68 BDW KNL68

spal 004 605.35 562.21 579.43 1.31 1.91

TF17 674.51 837.55 954.50 1.49 2.88

lp nug30 730.05 970.23 1057.18 1.65 3.13

n4c6-b6 759.01 1001.79 1076.38 1.62 3.12

TF18 761.72 1018.61 1092.40 1.56 3.03

13



pastix

authors of this study: mathieu faverge, gregoire pichon,

pierre ramet, jean roman



Problem to solve

Problem: solve Ax = b

• Cholesky: factorize A = LLT (symmetric pattern (A + AT ) for LU)

• Solve Ly = b

• Solve LT x = y

Sparse Direct Solvers: PaStiX approach

1. Order unknowns to minimize the fill-in

2. Compute a symbolic factorization to build L structure

3. Factorize the matrix in place on L structure

4. Solve the system with forward and backward triangular solves

15



Pastix Experimental Conditions

Set of matrices

• Subset of large matrices from SuiteSparse collection, around 1
million unknowns each

PaStiX

• Factorization step only

• Implementation over the parsec runtime system

• Blocking sizes from 160 to 320 on low flops/nnzL ratio

• Blocking sizes from 320 to 640 on high flops/nnzL ratio

16



Numerical Factorization

Algorithm to eliminate the block column k

1. Factorize the diagonal block (POTRF/GETRF)

2. Solve off-diagonal blocks in the current column (TRSM)

3. Update the trailing matrix with the column’s contribution (GEMM)

How to do it

• 1D updates per block of
columns for lower level of
elimination tree

• 2D updates ≈ Dense
factorization for higher levels

17



Performance on the KNL architecture

ld
oo

r

bo
ne

S1
0

Fl
an

_1
56

5

bo
ne

01
0

au
di

kw
_1

Ho
ok

_1
49

8

nd
24

k

Fa
ul

t_
63

9

Ge
o_

14
38

Em
ilia

_9
23

Se
re

na

af
_s

he
ll1

at
m

os
m

od
l

at
m

os
m

od
j

m
at

r5

0

200

400

600

800

1000

1200

Pe
rfo

rm
an

ce
 (G

Fl
op

s/
s)

Cholesky LU

18



Conclusions

KNL Memory modes

• If a problem fits in MCDRAM, it is usuallt better to use flat mode

• Manual allocations in MCDRAM are possible with hbm

• Tested problems do not fit in flat memory so we stick to quadrant

• Some interesting material for KNL : Prace

On sparse direct methods

• Modern runtime systems work great for implementing complex
applications on single-node, accelerated systems.

• For more details on qr mumps for KNL see1

• For more details on PaStiX, ask Mathieu Faverge for the SIAM
CSE 2017 talk

1E. Agullo et al. Achieving high-performance with a sparse direct solver on Intel
KNL. . Research Report RR-9035. Inria Bordeaux Sud-Ouest ; CNRS-IRIT ; Intel
corporation ; Université Bordeaux, Feb. 2017, p. 15. url:
https://hal.inria.fr/hal-01473475. 19

http://www.prace-ri.eu/best-practice-guide-knights-landing-january-2017/
https://hal.inria.fr/hal-01473475

	Matrix Product
	qr_mumps Authors of this study: Emmanuel Agullo, Alfredo Buttari, Mikko Byckling, Abdou Guermouche, Ian Masliah 
	PaStiX Authors of this study: Mathieu Faverge, Gregoire Pichon, Pierre Ramet, Jean Roman 

