
evaluating the impact of intel knl memory

settings on performance through case

studies

I. Masliah

28-03-2017



KNL on PLAFRIM

Current configurations :

• Kona01 : flat / quadrant

• Kona02 : cache / quadrant

• Kona03 : hybrid / quadrant

• Kona04 : cache / SNC-4

What we have seen :
For memory bound problems, the flat memory mode is always more
efficient

This is also true for compute bound problems (if it fits in
MCDRAM)
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Direct allocations in MCDRAM

Need to download and install memking

• Available at https://github.com/memkind

• Provides a special malloc, a memory allocator in C++ and Fortran
attributes

#include <vector >

#include <hbw_allocator.h>

using T = double;

std::vector <T, hbw::allocator <T>> A(m*n);

std::vector <T, hbw::allocator <T>> B(m*n);

std::vector <T, hbw::allocator <T>> C(m*n);

cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasNoTrans ,

m , n, k, alpha , A.data(), lda , B.data(), ldb , beta , C.data(), ldc);
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matrix product



Scaling matrix product (square matrices)
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Scaling matrix product (square matrices)
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batched matrix product (100 000)
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qr mumps

authors of this study: emmanuel agullo, alfredo buttari,

mikko byckling, abdou guermouche, ian masliah



The Multifrontal QR method

The original multifrontal method by Duff & Reid ’83 can be extended
to QR factorization of sparse matrices.
This method is guided by a graph called elimination tree:

• each node is associated with a
relatively small dense matrix called
frontal matrix (or front) containing k
pivots to be eliminated along with all
the other coefficients concerned by
their elimination.
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The Multifrontal QR method

The tree is traversed in topological order (i.e., bottom-up) and, at
each node, two operations are performed:

• assembly: coefficients from the original
matrix associated with the pivots and
contribution blocks produced by the
treatment of the child nodes are
stacked to form the frontal matrix.

• factorization: the k pivots are
eliminated through a complete dense
QR factorization of the frontal matrix.
As a result we get:
◦ part of the global R and Q factors.
◦ a triangular contribution block that will

be assembled into the father’s front.
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The Multifrontal QR method

Typically two sources of parallelism are exploited in the multifrontal
method

• tree-level parallelism: frontal matrices
located in independent branches in the
tree can be processed in parallel.

• node-level parallelism: large frontal
matrices factorization may be
performed in parallel by multiple
threads.
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qr mumps Experimental Conditions

Matrices from the UF SParse Matrix Collection:

Mat. name m n nz op. count peak mem

(Gflop) (GB)

spal 004 10203 321696 46168124 27059 23.3

TF17 38132 48630 586218 38209 12.8

n4c6-b6 104115 51813 728805 97304 35.6

lp nug30 52260 379350 1567800 171051 83.4

TF18 95368 123867 1597545 194472 78.1

• Factorization step only

• Implementation over the StarPU runtime system
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Tuning the KNL system for qr mumps

• Important memory requirements
• Large number of dynamic memory allocations

The Hardware

• Cache mode: Flat, Cache, Hybrid

• Clustering mode: All-to-All, Quadrant, Hemisphere, SNC2, SNC4

The Operating System

• Huge pages : Transparent Huge Page, TBB
◦ Standard page size : 4KB
◦ Huge page size : 2MB, 1GB
◦ Number : freely settable

• Memory Allocator : default, TBB
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Tuning the KNL system for qr mumps

• Important memory requirements
• Large number of dynamic memory allocations

Test machines :

System 1 (KNL64) Intel(R) Xeon Phi(TM) CPU 7210 - 64 cores @1.3 GHz

System 2 (KNL68) Intel(R) Xeon Phi(TM) CPU 7250 - 68 cores @1.4 GHz

System 3 (BDW) Intel(R) Xeon(R) E5 2697v5 - 2 sockets, 18 cores @2.3 Ghz

KNL Hardware settings :

Clustering mode quadrant

MCDRAM mode cache

Operating system/memory settings :

Operating system RHEL 7.2

Memory allocator TBB : scalable allocator, Explicit Hugepages (8000)

THP always active

Hugepage size 2MB

Libraries settings :

Compiler Intel Parallel Studio 2017, Update 1

BLAS library Intel Math Kernel Library, 2017 Update 1

qr mumps 2.0

StarPU/scheduler trunk (rev.19630)/ws
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Tuning block sizes on KNL
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Tuning memory settings for Multifrontal QR (KNL64)
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Energy efficiency and performance

Gflop/s Gflop/s/watt

Matrix BDW KNL64 KNL68 BDW KNL68

spal 004 605.35 562.21 579.43 1.31 1.91

TF17 674.51 837.55 954.50 1.49 2.88

lp nug30 730.05 970.23 1057.18 1.65 3.13

n4c6-b6 759.01 1001.79 1076.38 1.62 3.12

TF18 761.72 1018.61 1092.40 1.56 3.03
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pastix

authors of this study: mathieu faverge, gregoire pichon,

pierre ramet, jean roman



Problem to solve

Problem: solve Ax = b

• Cholesky: factorize A = LLT (symmetric pattern (A + AT ) for LU)

• Solve Ly = b

• Solve LT x = y

Sparse Direct Solvers: PaStiX approach

1. Order unknowns to minimize the fill-in

2. Compute a symbolic factorization to build L structure

3. Factorize the matrix in place on L structure

4. Solve the system with forward and backward triangular solves
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Pastix Experimental Conditions

Set of matrices

• Subset of large matrices from SuiteSparse collection, around 1
million unknowns each

PaStiX

• Factorization step only

• Implementation over the parsec runtime system

• Blocking sizes from 160 to 320 on low flops/nnzL ratio

• Blocking sizes from 320 to 640 on high flops/nnzL ratio
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Numerical Factorization

Algorithm to eliminate the block column k

1. Factorize the diagonal block (POTRF/GETRF)

2. Solve off-diagonal blocks in the current column (TRSM)

3. Update the trailing matrix with the column’s contribution (GEMM)

How to do it

• 1D updates per block of
columns for lower level of
elimination tree

• 2D updates ≈ Dense
factorization for higher levels
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Performance on the KNL architecture
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Conclusions

KNL Memory modes

• If a problem fits in MCDRAM, it is usuallt better to use flat mode

• Manual allocations in MCDRAM are possible with hbm

• Tested problems do not fit in flat memory so we stick to quadrant

• Some interesting material for KNL : Prace

On sparse direct methods

• Modern runtime systems work great for implementing complex
applications on single-node, accelerated systems.

• For more details on qr mumps for KNL see1

• For more details on PaStiX, ask Mathieu Faverge for the SIAM
CSE 2017 talk

1E. Agullo et al. Achieving high-performance with a sparse direct solver on Intel
KNL. . Research Report RR-9035. Inria Bordeaux Sud-Ouest ; CNRS-IRIT ; Intel
corporation ; Université Bordeaux, Feb. 2017, p. 15. url:
https://hal.inria.fr/hal-01473475. 19

http://www.prace-ri.eu/best-practice-guide-knights-landing-january-2017/
https://hal.inria.fr/hal-01473475
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