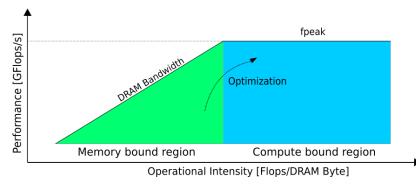
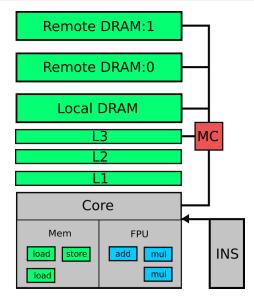

Usability of the Cache Aware Roofline Model on Knight Landings

Nicolas Denoyelle nicolas.denoyelle@inria.fr

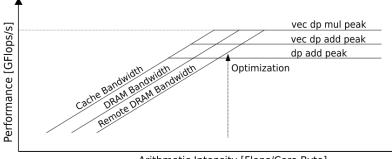

28 mars 2017

Machine Model

Instructions



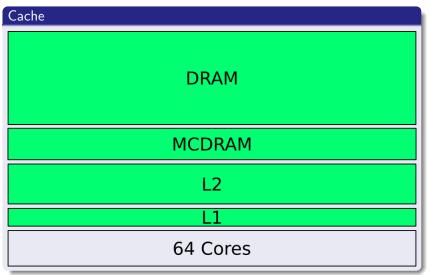
 $\ensuremath{\operatorname{Figure}}$ – Machine with 2 components


 $\ensuremath{\mathbf{Figure}}$ – Roofline Model of an hypothetical system with one memory and one compute unit

Enhanced Machine Model

 $\mathbf{F}\mathbf{IGURE}$ – Hypothetical NUMA system with a memory hierarchy and one Core

Cache Aware Roofline Model

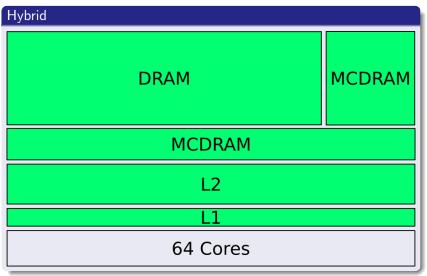


Arithmetic Intensity [Flops/Core Byte]

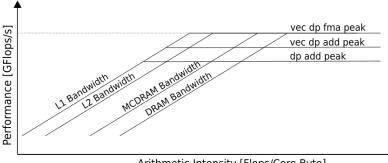
FIGURE – Cache Aware Roofline Model of hypothetical NUMA system with a memory hierarchy and one Core

KNL Model

Several modes, several performances (Cf Ian Masliah Talk), one model.



Several modes, several performances (Cf Ian Masliah Talk), one model.


Flat	
DRAM	MCDRAM
L2	
L1	
64 Cores	

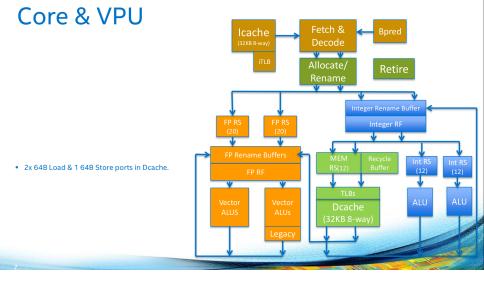
KNL Model

Several modes, several performances (Cf Ian Masliah Talk), one model.

Several modes, several performances (Cf Ian Masliah Talk), one model.

Arithmetic Intensity [Flops/Core Byte]

Bandwidths


obj	type	GByte.s	sd	
L1	Load	8364	785	
L1	Intel	4030	NA	
L2	Load	2293	370	
L2	Intel	984	NA	
MCDRAM	Load	356	7.61	
MCDRAM	Store(nt)	267	0.40	
MCDRAM	Intel	463.7	NA	
DRAM	Load	86.7	0.29	
DRAM	Store(nt)	50.9	0.04	
DRAM	Intel	83.1	NA	

Throughput max $\simeq 1.56$ Instructions/cycle (per core)

Performance peaks

type	GFlop.s	sd	
ADD	1299	8.75	
Intel ADD	528	NA	
MUL	1299	5.82	
FMA	2597	12.6	
Intel FMA	1055	NA	

Throughput max $\simeq 1.70$ Instructions/cycle (per core)

KNL NUMA Bandwidths

SNC4									
DRAM	MCDRAM	DRAM	MCDRAM	DRAM	MCDRAM	DRAM	MCDRAM		
L2 L:		L2	L2 L2			L2			
u u			LL		u				
16 Cores		16 Cores		16 Cores		16 Cores			

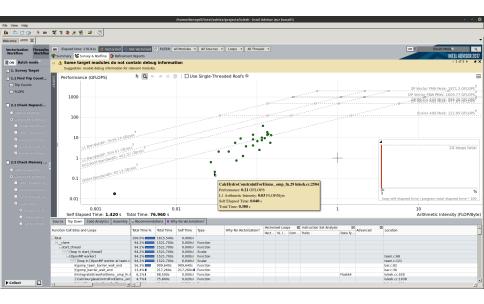
		from								
		Cluster :0		Cluster :1		Cluster :2		Cluster :3		
		NUMA :0	MCDRAM :1	NUMA :2	MCDRAM :3	NUMA :4	MCDRAM :5	NUMA :6	MCDRAM :7	
to	Cluster :0	35.3	65.8	20.8	85.7	34.6	64.5	20.6	70.5	
	Cluster :1	35.2	62.6	20.8	86.8	35.6	78.0	20.7	85.8	
	Cluster :2	34.9	59.2	20.8	77.8	35.8	86.8	20.8	79.2	
	Cluster :3	35.0	60.5	20.7	84.4	35.6	79.0	20.7	86.6	

TABLE - Per-cluster load bandwidth (GByte/s) matrix of the KNL.

CARM with Intel Advisor on PlaFRIM

Compile test code with -g

module load compiler/intel/64/2017_update2-knl

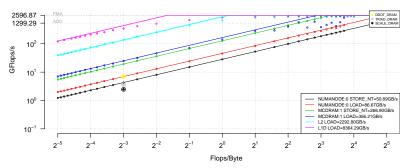

source /cm/shared/apps/intel/composer_xe/2017_update2-knl/ advisor_2017.1.2.501009/advixe-vars.sh

advixe-gui

2 runs :

- Instrument code and collect functions, loops : Flops, Bytes.
- Run normal code and collect functions, loops : runtime.

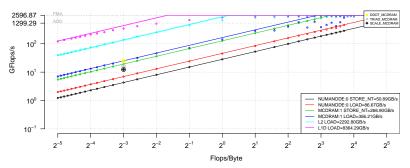
CARM with Intel Advisor on PlaFRIM



Streaming Benchmarks

- ddot dot += a[i] * b[i] (2LD + 2 FLOPS)
- scale a[i] = scalar*b[i] (1LD + 1ST + 1 FLOPS)
- triad c[i] = a[i]+scalar*b[i] (2LD + 1ST + 2 FLOPS)

KNL_flat_load_STREAM


Bandwidth-bound benchmarks below the roof?!

Streaming Benchmarks

- ddot dot += a[i] * b[i] (2LD + 2 FLOPS)
- scale a[i] = scalar*b[i] (1LD + 1ST + 1 FLOPS)
- triad c[i] = a[i]+scalar*b[i] (2LD + 1ST + 2 FLOPS)

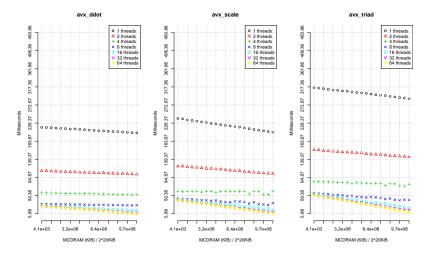
KNL_flat_load_STREAM

Bandwidth-bound benchmarks below the roof?!

Analytical model

- *s* the size of *b* array and *a* array, respectively stored and loaded in the process,
- t the wall time,
- B_s the memory store bandwidth,
- B₁ the memory load bandwidth,

$$t = \frac{s}{B_s} + \frac{s}{B_l} \tag{1}$$


Actually more bandwidths : load, store, store(nt) for each Cluster, for each DRAM and MCDRAM.

$$t = \sum_{\{(s_k, B_l)\}} \frac{s_i}{B_j}$$
(2)

Analytical model

Check with DRAM, and MCDRAM.

We allocate 1GB buffer with a slice in DRAM and another in MCDRAM.

- CARM for locality, with automatic building and validation.
- Energy CARM.
- Extended analytical model for memory partitionning.
- What about latency? Only 10% improvement on lulesh proxy-application between DRAM and MCDRAM.

Merci