
Fast Matrix-Vector Multiplication in Kronecker Form

Oguz Kaya and Olivier Coulaud

1 Background and Motivation

Tensors, or multi-dimensional arrays, are structures that generalize vectors and matrices to higher dimensions. Specifi-
cally, X ∈ RN1×N2×···×ND is an D-dimensional tensor with elements xi1,...,iD ∈ R where 1 ≤ id ≤ Nd for all 1 ≤ d ≤ D.
Tensor-based computations have witnessed a remarkable increase in popularity in the last two decades due to great ad-
vancements in tensor theory and algorithms as well as their expressive power for high-dimensional algebraic structures
that appear in fundamental applications in computational biology, chemistry, physics, signal processing, data analysis,
and machine learning. Tensors are particularly useful when the problem at hand either has or can be reformulated to
exhibit a high-dimensional structure. In this formulation, “high-dimensional” matrices and vectors of size ND ×ND

and of size ND, respectively, are expressed as 2D- and D-dimensional tensors, respectively, of size N in each dimension.
In most cases, the inherent structure and properties of the problem that form these matrices/vectors (and correspond-
ing tensors) imply a “low-rank” property; matrices and vectors can be expressed using polynomial number of elements
in N and D (instead of N2D or ND elements), which is rendered possible via so-called tensor decompositions. Once
matrices and vectors are expressed in this form, all matrix and vector operations such as matrix-vector multiplication
and basic vector arithmetic (addition, subtraction, multiplication/division by a scalar, inner product) are performed
under this “compressed” scheme with tremendous gains in terms of computational and memory costs.

One of the most popular tensor decompositions used in this context is called tensor-train decomposition. A matrix
of size ND ×ND is expressed via tensor-train network of D 4-dimensional tensors of size N ×N ×R×R, where R is
the rank of the matrix in the tensor-train form. Similarly, a vector of size ND comprises D 3-dimensional tensors of
size N ×R×R. An anologous way to interpret these tensors would be to consider them as matrices (or vectors) of size
N ×N (or N), where each element in the matrix (vector) is a matrix of size R × R. We will be exclusively working
on a fundamental kernel involving the multiplication of such matrix/vector of matrices described in what follows.

2 Matrix-vector multiplication in Kronecker form

Matrix-vector multiplication is a fundamental computational kernel in scientific computing whose optimization plays
a key role in obtaining high performance linear and non-linear solvers. For a given matrix A ∈ RM×N and a vector
x ∈ RN , the multiplication y = Ax is defined as yi =

∑N
j=1 Ai,jxj where y ∈ RM .

Here, we will consider a generalized version of the standard matrix-vector multiplication, involving a matrix of
matrices and a vector of matrices, i.e., Ai,j ,xj and yi are matrices. In describing this computation, we are in need of
a special operation called Kronecker product on matrices, which is defined in what follows.

The Kronecker product of two matrices B ∈ RMB×NB and C ∈ RMC×NC is denoted by the operation ⊗ and results
in a matrix D = B⊗C,D ∈ RMBMC×NBNC , which is defined as

D = B⊗C =

 B1,1C · · · B1,NB
C

...
. . .

...
BMB ,1C · · · BMB ,NB

C

 (1)

We now define an operation we call matrix-vector multiplication in Kronecker form (MxVK) as follows. Given a
matrix of N ×N matrices A such that Ai,j ∈ RRA×QA for some fixed RA, QA for all 1 ≤ i, j ≤ N , and a vector of N
matrices x such that xj ∈ RRx×Qx for some fixed Rx, Qx for all 1 ≤ j ≤ N , the result of the MxVK yields a vector
y = Ax with entries

yi =

N∑
j=1

Ai,j ⊗ xj , yi ∈ RRARx×QAQx

Note that when RA = Rx = 1, MxVK reduces to standard matrix-vector multiplication as Ai,j ,xj and yi become
scalars and Kronecker product reduces to scalar multiplication. We provide a pictorial representation of this operation
in the following figure in which the computation of y2 =

∑N
j=1 A2,j ⊗ xj is highlighted.

1



=

A x y

RA

RA Rx

Rx

RARx

RARx

MxVK is a fundamental kernel in low-rank tensor computations using tensor-train decomposition; carrying out
matrix-vector multiplies in this form constitutes one of the most expensive steps in the context of an iterative solver.
The goal in this task is to implement very efficient MxVK kernels and effectively parallelize them with different
paradigms using OpenMP.

You are already given a skeleton code mxvk.c that accepts the parameters N,RA, QA, Rx, Qx then creates a matrix
A and vectors x and y with these parameters, runs the MxVK function on these matrices to fill the result vector y,
and checks the correctness of this result. Matrices and vectors are stored in data structures provided in matmat.c/.h

and vecmat.c/.h. Here, A is stored in row-major format ; meaning in the memory A1,1 is stored first, then A1,2, and
the rest of the row in the order A1,3 . . . ,A1,N , which is followed by the second row A2,1, . . . ,AN,1, etc. Each element
Ai,j , xj , and yi are stored, however, in column-major format, i.e., xj(:, 1) is stocked first, followed by x(:, 2), etc.

Do not hesitate to take your time to read the provided code and have a look at matrix/vector data structures. You
will see in the code that MxVK function utilizes another subroutine to perform the Kronecker product of two matrices
as in (1), then performs the MxVK using this subroutine as in (2).

3 Tasks

3.1 Optimizing sequential MxVK

In this first task, your goal is to optimize the given MxVK kernel as much as possible. Take particularly into con-
sideration the fact that matrices Ai,j and Xj are relatively small (e.g. ≤ 64 in each dimension). A good start
would be determining the total number of flops performed in MxVK, the total amount of data “touched” during this
computation (or total mops (memory operations)) in terms of N , RA , and Rx. Finally, #flops/#mops gives the
computational intensity of this operation, which you should aim to attain with an optimized implementation.

Explain each optimization technique you employed, and report the time difference with respect to previous baseline.
Also report how well your code performs with respect to different set of parameters (i.e., small or large N , RA, Rx),
and try to fine-tune your code for edge cases if possible.

You are NOT allowed to use any sort of parallelization for this task. You are indeed allowed, however, to employ
this optimized kernel in the following tasks requiring parallelization.

3.2 Parallelization using OpenMP

Now that you have a working sequential implementation, it is time to optimize it to the fullest and obtain the best
performance. Here, you will parallelize the optimized sequential implementation you provided in the prevoius case
using OpenMP parallel constructs. You are free to use parallel loops or sections. You are also welcome to make
significant changes to your sequential implementation, in which case you would need to report why you needed such a
change from a performance point of view. Make sure your paralellization scales acceptably well for pathological input
sizes as well (i.e., NA very small, RA small, Rx large, etc.). Explain your parallelization strategy, how you divide the
work among threads, achieve load balance, handle data dependencies, perform synchronization (if necessary), etc.

3.3 Parallelization using OpenMP tasks

You are NOT allowed to have any other means of parallelization for this assignment except OpenMP tasks.
You will now do another parallel implementation, but this time using OpenMP tasks. Note that your implemen-

tation should NOT be a simple re-wrapping of your previous parallelization with loops; you should try to extract

2



finer-grain parallel tasks that have elegant output independence hence can be executed in parallel efficiently, but are
coarse enough that it would not kill the performance due to tasking overhead. If you are new to OpenMP task-based
programming, you can have a look at the quick introduction and examples we provided to get going.

4 General guidelines and considerations

• You can assume that 1 ≤ RA, Rx ≤ 64, and 1 ≤ N ≤ 1024.

• It might be useful to take into consideration the machine parameters (particularly the cache size at different
levels, which you can query using lscpu command on Linux).

• Grading will be based on the speed of execution of your kernels. We will run each kernel 100 times and take the
average. You should also be writing a report summarizing your approaches for optimization, and performance
gains you obtained from each approach. (Grading criteria to be completed...)

• Since we focus on parallelization, you are also encouraged to parallelize the work among the group members.
For instance, sequential optimization and parallelization could be done in parallel!

3


