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Discrete fracture networks (DFN) are sets of mutually intersecting planar poly-
gons resembling fractures in the underground.
DFN models are widely used to simulate underground phenomena and are par-
ticularly well suited, in contrast to homogenization methods, for transport phe-
nomena, since fractures are individually represented, thus allowing for an accu-
rate representation of flow paths.
The main difficulties to be addressed in dealing with simulations in DFNs are:

1. geometrical complexities: the generation of a mesh suitable for finite ele-
ments and conforming to interfaces (i.e. fracture intersections, or traces)
on intricate networks of fractures often results infeasible or leads to poor
quality elements;

2. domain size: networks for practical applications might count up to millions
of fractures, each of them might have a fundamental impact on the flow
properties, despite its size.

Enlargement of a mesh generation around intersections between fractures.
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Darcy Flow

In a first approximation, the flow can occur only between the fractures without
the possibility to spread in the rock matrix.
Taking into account some flow properties, the Darcy model has a very high
reliability; its weak form and coupling equations for the DFNs, can be expressed
as it follows:∫
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where Ω = ∪i=1,...,IFi denotes the DFN in the 3D space. Ki is a symmetric pos-
itive definite transmissivity tensor on Fi, while H denotes the global hydraulic
head in the full DFN, and Hi its restriction to fracture Fi.

Darcy Flow: Optimization Approach

The previous problem can be reformulated as a PDE constrained optimization.
In order to have a coercive constraint equation on each fracture Fi, a control
variable Um
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with a strictly positive parameter α.
So, the problem can be reformulated as:
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Conclusions

Generating a conforming mesh is a very complex task for DFNs simulations; in
fact, we have to consider that, in a single fracture, hundreds of traces could be
presented, each of which might have a fundamental impact on the flow proper-
ties, despite its size, making their management very hard to handle.

It has been proposed a new method, which overcome the complexities for-
merly stated, based on an optimization approach that relax the constrain of
the conformity of the mesh, and manage each fracture singularly as a domain
decomposition, which can be massively parallelized.

We want to exploit all this parallelism, both starting to use an hybrid approach
(MPI+OpenMP and/or MPI+CUDA) and optimizing our MPI pure framework
and its CUDA porting.
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